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Abstract

This paper deals with the optimization of the electromechanical control of beams dynamics. Using the mode expansion

formalism, an analytical investigation is carried out to find adequate electrical parameters to reduce the vibration

amplitude, to control the snap through instability and horseshoe chaos. The analytical investigation is validated and

complemented by the numerical simulation of the modal equations as well as by the direct numerical simulation of the

beam nonlinear partial differential equation under control.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have witnessed a growing interest in the wish to control vibration in linear and nonlinear
systems. In this line, many works have been devoted to the dynamic vibration absorber [1–7]. This is used to
reduce excessive vibration in mechanical structures. Nagem et al. [8] studied the control of a linear structure
subject to an electromechanical control and found that, with a good choice of parameters the amplitude of the
system can be reduced. Nana et al. [9,10] presented a process of optimizing the control devices focussing their
attention on a single- and double-well Duffing oscillator with delay and concluded that control can turn in bad
or good direction depending on the values of the control gain parameters. Moreover, the time-delay has strong
effect on the value of the critical parameters leading to control.

All these works have been done by considering a set of ordinary differential equations approximating the
nonlinear partial differential equations of the structure. In the case of beams, the modal equations are
obtained when one applies approximation methods such as Galerkin method or Fourier series. Thus, there is a
real interest to complement and compare the results of the modal analysis to that of a direct numerical
simulation of the full nonlinear partial differential equation of the beam dynamics. This is the main aim of this
paper containing five sections. Section 2 considers the structural model, its equations and the discretization
scheme to solve the partial differential equation. Section 3 deals with the derivation of the parameters leading
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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to the reduction of the amplitude of vibration. Section 4 is devoted to the effects of the controller on the
Melnikov chaos and snap-through instability. At each step, the results of both the modal equations analysis
and that of the numerical simulation of the partial differential equations are given. Section 5 concludes the
paper.

2. Physical system, equations and numerical scheme

2.1. Physical system

Consider an electromechanical controlled beam of length L1 under a localized periodic force as shown in
Fig. 1. In discussing beams, attention is restricted to planar and non-rotating motion. Assuming that each
section remains in its plane and considering a linear stress strain law, the equations of motion governing the
nonlinear dynamics of a beam with uniform shape subject to a localized periodic load of intensity f 1 and
frequency w under the electromechanical control (Fig. 1) are given as [11]
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The electric control device is described by

L0
di0

dt
þ R0i0 ¼ lbB

qV

qt
dðX � X 1Þ. (4)

In Eqs. (1) and (2), E is the Young modulus of the beam, r is the beam density, A and J are, respectively, the
area and the moment of inertia of the beam cross-section of radius of gyration r0, V ðX ; tÞ is the transversal
deflection of the beam while UðX ; tÞ is the axial displacement, V and U depend on the spatial coordinate X and
time t, dð:Þ stands for Dirac delta function and f 1dðX � X 0Þ cosðOtÞ is the periodic force, Z is the damping
which is assumed to be constant, P is the constant axial force, L0 and R0 are, respectively, the inductance and
resistance of the control device, X 0 and X 1 are the positions of the localized force and the control device.
Fig. 1. Beam under electromechanical control.
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We introduce the dimensionless variables:
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Here U0 and I0 are, respectively, the characteristic voltage and current of the electromechanical device.
Consider a hinged–hinged beam and assume that the longitudinal inertial term r2q2u=qt2 and ðqu=qxÞ2 are
negligible (case of beam with small radius of gyration r), Eqs. (1)–(4) reduce to
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with e ¼ ð1=2Þ
R 1
0 ðqv=qxÞ2 dx. Throughout the paper, we use r ¼ 0:04, f ¼ 0:04 (otherwise indicated) and

l ¼ 0:4. We will assume f 11 ¼ f 22.

2.2. Mode equations

For the analytical purpose, it is convenient to assume an expansion of the deflection vðx; tÞ in terms of the
combination of the linear free oscillation modes, which are those of a hinged–hinged beam in this case. Thus,
one can write vðx; tÞ in the form

vðx; tÞ ¼
X1
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qmðtÞFmðxÞ, (7)

where Fm are the eigenfunctions of the equation

q2v
qt2
þ

q4v

qx4
¼ 0 (8)
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and qm are dynamical functions to be determined. Fm are thus defined as FmðxÞ ¼ sinðmpxÞ. Substituting
Eq. (7) into Eqs. (5) and (6), multiplying Eq. (5) by FmðxÞ and integrating over the dimensionless length ½0; 1�
of the beam leads to the modes equations
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f n ¼
2f

r2
sinðnpx0Þ; hm ¼ f 2 sinmpx1.

Around the nth mode, this set of equations becomes
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From Eq. (12), the one mode dynamics of the beam is that of a Duffing like oscillator with a one well potential
(hard Duffing oscillator) if G4n2p2 and a two wells potential if Gon2p2. In the first configuration, the
dynamics shows nonlinear vibration around the equilibrium state of the beam and also chaotic dynamics for
large value of the transversal load. Since an analytical prediction of chaos is not possible in this case, we
restrict the analysis to the control of vibration amplitude. This is done in Section 3. In the second case, two
particular behaviors can be found: snap-through instability and horseshoe or Melnikov chaos. In Section 4, we
derive the parameters to control these two types of behavior which are dangerous for mechanical structures.
2.3. The direct numerical scheme

To solve numerically Eqs. (5) and (6), we set h ¼ 1=N, x ¼ ði � 1Þh and t ¼ jk where h and k are the spatial
and temporal steps, i and j are integer variables relative to position and time and N is the number of discrete
points considered along the beam length. The finite differences definition and trapeze formula transform the
partial differential equations into
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The boundary conditions are

v1; j ¼ vnþ1; j ¼ 0; vnþ2; j ¼ �vn; j ; v0; j ¼ �v2; j 8j. (16)

This discretization scheme is stable if
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3. Optimization of the electromechanical control of vibration in a single-well potential

In this section we set G ¼ 0 (beam with no axial load). To determine the amplitude of harmonic vibrations
of the system under control, we use the harmonic balance method. In this spirit, we set

qnðtÞ ¼ gn cosðwtþ fnÞ. (18)

Inserting this expression in Eqs. (12) and (13) then equating the coefficient of sinðwtÞ and cosðwtÞ, we find that
the amplitude gn obeys the following nonlinear algebraic equation
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r2
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For the beam without control, the amplitude of vibration satisfies the following equation:
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The control strategy is effective when the amplitude of the system with the electromechanical device is less
than that of the uncontrolled system, that is gnpAn. Let us first assume that the nonlinear term bnq3

n is
negligible.The controlling device is efficient when

Lp
4Rlþ kn

2ðw2 � w2
0nÞ

. (21)

In the ðw;LÞ plane, this requires that

Ro
�kn

4l
for wow0n (22)

and

R4
�kn

4l
for w4w0n. (23)

In Fig. 2 we have plotted relation (21) in the ðw;LÞ plane for condition (22) (curve with line). The results of
the finite differences simulation of Eqs. (14) and (15) are also reported (dotted line). There is a fairly
good agreement with the analytical result (thin line) around the natural frequency of the first mode n ¼ 1
(Fig. 2a). The same remark is made as the external frequency is greater than the natural frequency of the
third mode (Fig. 2b). The domain located below the curve is where the control is effective in reducing
the amplitude of vibration. The boundary RðwÞ for the control is also presented (Fig. 3) assuming that
w4wcn with

wcn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

2L
þ w2

0n

r
.

The domain located above the curve is where the control is effective in reducing the amplitude of vibration
around the natural frequency of the first (Fig. 3a) and third modes (Fig. 3b).

For the nonlinear case (the term bnq3
n taken into account), we proceed as follows. The boundary condition is

obtained by setting

An ¼ gn. (24)



ARTICLE IN PRESS

Fig. 2. Boundary of controlled domain in ðw;LÞ plane for R ¼ 20, f 11 ¼ 0:01 in the case of linear dynamics: (a) around the first natural

frequency and (b) around the third natural frequency.
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Using Eqs. (19) and (20), the amplitude at the boundary is given by

An ¼ gn ¼
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Fig. 3. Boundary of controlled domain in ðw;RÞ plane for L ¼ 0:01, f 11 ¼ 0:01 in the case of linear dynamics: (a) around the first natural

frequency and (b) around the third natural frequency.
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Inserting this expression (25) in Eq. (19) leads to

3bnf 2
n

4
¼ w2 � w2

0n �
kn þ 4lR

2L

� �
kn þ 4lR

2L

� �2

þ ð2lwÞ2

" #
. (27)

This last equation defines in the parameters space the boundary for the efficiency of the control of the
amplitude of vibration. It is plotted in Fig. 4. The agreement between the numerical results (dotted lines) and
the analytical ones is better around the first mode than around the third mode.
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Fig. 4. Boundary of controlled domain in ðw;RÞ plane for L ¼ 0:01, f 11 ¼ 0:01 and f ¼ 10�3 in the case of nonlinear dynamics: (a) around

the first natural frequency and (b) around the third natural frequency.
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4. Control of snap-through instability and Melnikov chaos in a double-well potential

4.1. Control of snap-through instability

In this section we set G ¼ 10:88 and we consider the first mode ðn ¼ 1Þ for analytical investigation. The
structure thus possesses a double-well configuration. In a double-well potential, the structure often changes
the sign of its curvature. This is called snap-through instability. Analytically, the critical value f 1cr of the
external load can be computed from the fact that snap-through instability occurs when the structure initially at
the stable point q01s ¼ �2r=p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G� p2
p

crosses the potential barrier at q01i ¼ 0. The snap-through instability
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takes place if f 14f 1cr. To derive the expression of f 1cr, we set

qn ¼ A0n þ An cosðwtþ fnÞ. (28)

Inserting this expression in Eqs. (12, 13) and considering the crossing condition, we obtain

�w2
01 � w2 þ

Lw2k1

ðLwÞ2 þ R2

� �2

þ 2lwþ
Rwk1

ðLwÞ2 þ R2

� �2

¼
5b1

2w2
01

f 1cr. (29)

The variation of f 1cr versus w and f 11 is reported in Figs. 5 and 6 along with the results of the direct
numerical simulation of Eqs. (14) and (15) and that of Eqs. (10) and (11). f 1cr is an increasing function of w

and f 11.
4.2. Control of the horseshoe chaos

In Ref. [12], Holmes used the Melnikov theory [13] to derive in the parameters space the condition for
the occurrence of horseshoe chaos in the bistable system studied in this paper. Later on, the condition of
the parametric suppression of this type of chaos was established in Refs. [14,15]. Melnikov theory defines the
condition for the appearance of the so-called transverse intersection points between the perturbed and
unperturbed separatrices or the appearance of the fractality on the basin of attraction. Our interest here is to
find how the parameters of the active control strategy affect the Melnikov condition for chaos or derive the
range of the control parameters inhibiting the Melnikov or Smale-horseshoe chaos in the bistable system. To
deal with such a problem, let us express the system of Eqs. (12) and (13) in the form (for n ¼ 1)

dU

dt
¼ F ðUÞ þ �GðU ; tÞ, (30)
Fig. 5. The critical force f 1cr for snap-through instability as function of f 11 for w ¼ 8, R ¼ 20, L ¼ 2� 10�3. Full lines: results of the

analytical investigation. Line with crosses: results of the numerical simulation of the differential equations (12) and (13) with n ¼ 1. Line

with squares: results of the direct numerical simulation of the nonlinear partial differential equation.
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Fig. 6. The critical force f 1cr for snap-through instability as function of w for f 11 ¼ 0:1, R ¼ 20;L ¼ 0:025. Full lines: results of the

analytical investigation. Crosses: results of the numerical simulation of the differential equations (12) and (13) with n ¼ 1. Line with

squares: results of the direct numerical simulation of the nonlinear partial differential equation.
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where in the state vector notation

U ¼ q1; p1 ¼
dq1

dt

� �
; F ¼ ðpl ;w

2
01q1 � b1q1Þ; G ¼ ð0;�2lp1 � g1i1 þ f 1 cosðwtÞÞ.

The unperturbed Hamiltonian system possesses two homoclinic orbits U0ðtÞ connecting the unstable point
q01i ¼ 0 of the potential to itself. These orbits are given by the following components:
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and
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with a ¼ R=L. The dimensionless current i10 is obtained by integrating the second part of Eq. (13) knowing q0

and p0.
The Melnikov function is defined by

Mðt0Þ ¼

Z 1
�1

F ðU0ðtÞÞ � GðU0ðtÞ; tþ t0Þdt, (34)

where t0 is a phase angle. Carrying out the integration, one finds that
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01Þ
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B@

1
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where
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Z 1
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� �
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Using the Melnikov criterion for the appearance of the intersection between the perturbed and the
unperturbed separatrices [12], it comes that chaos is suppressed when

f 1pf 1cm ¼
8lð�w2

01Þ
3=2

3b1
� f 112kðaÞ

 !
prw

ffiffiffiffiffi
2

b1

r� ��1
coth
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2
ffiffiffiffiffiffiffiffiffiffiffi
�w2

01

q
0
B@

1
CA, (38)
Fig. 7. Variation of kðaÞ as function of a.

Fig. 8. The critical forcing f 1cm for chaos control as a function of w for the controlled and uncontrolled cases where f 11 ¼ 0:1, R ¼ 20,

L ¼ 0:025. Full lines, uncontrolled case and lines with crosses, controlled case.
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where the negative sign corresponds to the case of the left homoclinic orbit at q ¼ �q01s and the positive sign
for the right homoclinic orbit at q ¼ q01s. After some mathematical transformations, the quantity kðaÞ is
integrated numerically (Fig. 7). For the set of parameters used in this part ðR ¼ 20;L ¼ 25� 10�3Þ, we obtain
kðaÞ ¼ 2:25. In Fig. 8 we have plotted the variation of f 1cm versus w for the controlled and uncontrolled cases.
For each frequency, the limit value of f 1cm predicted by the Melnikov theory is much larger when the
electromechanical device is associated to the beam. To confirm the validity of the analytical approach, we look
for the fractality of the basin of attraction. Considering first the case of the system without control and w ¼ 8,
a fractal structure is observed for f ¼ 2� 10�4 (Fig. 9). This value is greater than the value f ¼ 16� 10�5

calculated from the Melnikov condition (35). Figs. 9a and b are respectively obtained from Eqs. (12)–(15).
Now, taking into account the presence of the control, Fig. 10 shows that for the same parameters as in Fig. 9,
the fractality at f ¼ 2� 10�4 disappears when the control is added to the system. By varying f, the fractality
Fig. 9. Fractal basin of attraction for the uncontrolled system for w ¼ 8: (a) from modal equation and (b) from partial differential

equation.
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Fig. 10. Regular basin of attraction for the controlled system for f 11 ¼ 0:05, R ¼ 20, L ¼ 0:025, w ¼ 8: (a) from modal and (b) from

partial differential equation.
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reappears only when f ¼ 5:7� 10�4 (Melnikov prediction). We also note that the control destabilizes the
system, this justifies the difference in shapes when one compares Figs. 10a and b.

5. Conclusion

This paper has analyzed the electromechanical control of the beam dynamics in a state where the single-
mode representation of the dynamics is that of a Duffing oscillator: control of vibration, of snap-through
instability and horseshoe chaos in a beam with axial load. Analytical results have been complemented by the
finite differences simulation of the full partial differential equations and the use of the Runge–Kutta algorithm
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for the modal equations. The critical parameters for the reduction of amplitude, for the control of snap-
through instability and for the control of chaos have been obtained from approximate analytical treatments
and confirmed by the direct numerical simulation of the nonlinear partial differential equation.
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